Pandas JSON

JSON(JavaScript Object Notation,JavaScript 对象表示法),是存储和交换文本信息的语法,类似 XML。

JSON 比 XML 更小、更快,更易解析,更多 JSON 内容可以参考 JSON 教程

Pandas 可以很方便的处理 JSON 数据,本文以 sites.json 为例,内容如下:

实例

[
   {
   "id": "A001",
   "name": "AY知识库",
   "url": "www.aaronyang.cc",
   "likes": 61
   },
   {
   "id": "A002",
   "name": "Baidu",
   "url": "www.baidu.com",
   "likes": 124
   },
   {
   "id": "A003",
   "name": "淘宝",
   "url": "www.taobao.com",
   "likes": 45
   }
]

实例

import pandas as pd

df = pd.read_json('sites.json')

print(df.to_string())

to_string() 用于返回 DataFrame 类型的数据,我们也可以直接处理 JSON 字符串。

实例

import pandas as pd

data =[
{
   "id": "A001",
   "name": "AY知识库",
   "url": "www.aaronyang.cc",
   "likes": 61
   },
   {
   "id": "A002",
   "name": "Baidu",
   "url": "www.baidu.com",
   "likes": 124
   },
   {
   "id": "A003",
   "name": "淘宝",
   "url": "www.taobao.com",
   "likes": 45
   }
]
df = pd.DataFrame(data)

print(df)

以上实例输出结果为:

file

JSON 对象与 Python 字典具有相同的格式,所以我们可以直接将 Python 字典转化为 DataFrame 数据:

实例

import pandas as pd

# 字典格式的 JSON
s = {
    "col1":{"row1":1,"row2":2,"row3":3},
    "col2":{"row1":"x","row2":"y","row3":"z"}
}

# 读取 JSON 转为 DataFrame
df = pd.DataFrame(s)
print(df)

以上实例输出结果为:

      col1 col2
row1     1    x
row2     2    y
row3     3    z

从 URL 中读取 JSON 数据:

实例

import pandas as pd

URL = 'http://61.174.243.28:13541/wp-content/uploads/2023/05/test.json_.txt'
df = pd.read_json(URL)
print(df)

以上实例输出结果为:

file

内嵌的 JSON 数据

假设有一组内嵌的 JSON 数据文件 test.json

test.json 文件内容

{
    "school_name": "ABC primary school",
    "class": "Year 1",
    "students": [
        {
            "id": "A001",
            "name": "Tom",
            "math": 60,
            "physics": 66,
            "chemistry": 61
        },
        {
            "id": "A002",
            "name": "James",
            "math": 89,
            "physics": 76,
            "chemistry": 51
        },
        {
            "id": "A003",
            "name": "Jenny",
            "math": 79,
            "physics": 90,
            "chemistry": 78
        }
    ]
}

使用以下代码格式化完整内容:

实例

import pandas as pd

df = pd.read_json('test.json')

print(df)

以上实例输出结果为:

file

这时我们就需要使用到 json_normalize() 方法将内嵌的数据完整的解析出来:

实例

import pandas as pd
import json

# 使用 Python JSON 模块载入数据
with open('test.json','r') as f:
    data = json.loads(f.read())

# 展平数据
df_nested_list = pd.json_normalize(data, record_path =['students'])
print(df_nested_list)

以上实例输出结果为:

file

data = json.loads(f.read()) 使用 Python JSON 模块载入数据。

json_normalize() 使用了参数 record_path 并设置为 [\’students\’] 用于展开内嵌的 JSON 数据 students

显示结果还没有包含 school_name 和 class 元素,如果需要展示出来可以使用 meta 参数来显示这些元数据:

实例

import pandas as pd
import json

# 使用 Python JSON 模块载入数据
with open('test.json','r') as f:
    data = json.loads(f.read())

# 展平数据
df_nested_list = pd.json_normalize(
    data,
    record_path =['students'],
    meta=['school_name', 'class']
)
print(df_nested_list)

以上实例输出结果为:

file

接下来,让我们尝试读取更复杂的 JSON 数据,该数据嵌套了列表和字典,数据文件 nested_mix.json 如下:

nested_mix.json 文件内容

{
    "school_name": "local primary school",
    "class": "Year 1",
    "info": {
        "president": "John Kasich",
        "address": "ABC road, London, UK",
        "contacts": {
            "email": "admin@e.com",
            "tel": "123456789"
        }
    },
    "students": [
        {
            "id": "A001",
            "name": "Tom",
            "math": 60,
            "physics": 66,
            "chemistry": 61
        },
        {
            "id": "A002",
            "name": "James",
            "math": 89,
            "physics": 76,
            "chemistry": 51
        },
        {
            "id": "A003",
            "name": "Jenny",
            "math": 79,
            "physics": 90,
            "chemistry": 78
        }
    ]
}

nested_mix.json 文件转换为 DataFrame:

实例

import pandas as pd
import json

# 使用 Python JSON 模块载入数据
with open('nested_mix.json','r') as f:
    data = json.loads(f.read())

df = pd.json_normalize(
    data,
    record_path =['students'],
    meta=[
        'class',
        ['info', 'president'],
        ['info', 'contacts', 'tel']
    ]
)

print(df)

以上实例输出结果为:

file

读取内嵌数据中的一组数据

以下是实例文件 nested_deep.json,我们只读取内嵌中的 math 字段:

nested_deep.json 文件内容

{
    "school_name": "local primary school",
    "class": "Year 1",
    "students": [
        {
            "id": "A001",
            "name": "Tom",
            "grade": {
                "math": 60,
                "physics": 66,
                "chemistry": 61
            }
        },
        {
            "id": "A002",
            "name": "James",
            "grade": {
                "math": 89,
                "physics": 76,
                "chemistry": 51
            }
        },
        {
            "id": "A003",
            "name": "Jenny",
            "grade": {
                "math": 79,
                "physics": 90,
                "chemistry": 78
            }
        }
    ]
}

这里我们需要使用到 glom 模块来处理数据套嵌,glom 模块允许我们使用 . 来访问内嵌对象的属性。

第一次使用我们需要安装 glom:

pip3 install glom

实例

import pandas as pd
from glom import glom

df = pd.read_json('nested_deep.json')

data = df['students'].apply(lambda row: glom(row, 'grade.math'))
print(data)

以上实例输出结果为:

0    60
1    89
2    79
Name: students, dtype: int64

若文章对你有帮助,可以点赞或打赏支持我们。发布者:Aurora,转载请注明出处:http://61.174.243.28:13541/AY-knowledg-hub/pandas-json/

(0)
AuroraAurora站点维系者
上一篇 2023年 5月 16日 下午3:40
下一篇 2023年 5月 16日 下午3:42

相关推荐

  • 并发入门

    文章目录并发入门并发是什么?并行是什么?并行和并发有何区别?从技术上看并发和并行Go 对并发的支持 并发入门 上一节:第十九篇 接口二下一节:第二十一篇 协程 欢迎来到第 20 个…

    2023年 12月 5日
  • jq

    文章目录jq补充说明安装语法选项例子 jq 一个灵活的轻量级命令行JSON处理器 补充说明 jq 是 stedolan 开发的一个轻量级的和灵活的命令行JSON处理器,源码请参考 …

    入门教程 2023年 12月 19日
  • php

    文章目录php补充说明语法选项参数 php PHP语言的命令行接口 补充说明 php命令 是流行的Web开发语言PHP的命令行接口,可以使用PHP语言开发基于命令行的系统管理脚本程…

    入门教程 2024年 3月 1日
  • lvscan

    文章目录lvscan补充说明语法选项实例 lvscan 扫描逻辑卷 补充说明 lvscan命令 用于扫描当前系统中存在的所有的LVM逻辑卷。使用lvscan指令可以发现系统中的所有…

    入门教程 2023年 12月 19日
  • ftpcount

    ftpcount 显示目前已FTP登入的用户人数 补充说明 显示目前已ftp登入的用户人数。执行这项指令可得知目前用FTP登入系统的人数以及FTP登入人数的上限。 语法: ftpc…

    入门教程 2023年 12月 14日
  • find

    文章目录find补充说明语法选项参数实例根据文件或者正则表达式进行匹配否定参数根据文件类型进行搜索基于目录深度搜索根据文件时间戳进行搜索根据文件大小进行匹配删除匹配文件根据文件权限…

    入门教程 2023年 12月 14日
  • syslog

    文章目录syslog补充说明使用方法 syslog 系统默认的日志守护进程 补充说明 syslog 是Linux系统默认的日志守护进程。默认的syslog配置文件是/etc/sys…

    入门教程 2024年 3月 11日
  • C++ 数据类型

    使用编程语言进行编程时,需要用到各种变量来存储各种信息。变量保留的是它所存储的值的内存位置。这意味着,当您创建一个变量时,就会在内存中保留一些空间。 您可能需要存储各种数据类型(比…

    2024年 3月 18日
  • HTTP介绍

    文章目录HTTP/HTTPS 简介HTTP 工作原理HTTP 三点注意事项:HTTPS 作用证书有效证书无效 HTTP/HTTPS 简介 HTTP 协议是 Hyper Text T…

    2023年 5月 14日
  • 前言

    HTTP 协议一般指 HTTP(超文本传输协议)。 超文本传输协议(英语:HyperText Transfer Protocol,缩写:HTTP)是一种用于分布式、协作式和超媒体信…

    2023年 5月 14日
Translate »